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Abstract

The US Interstate Highway System had a significant impact on market accessibility and

transportation costs between regions. Whether this should lead to increased agglomer-

ation of economic activity due to increased ’economic centripetal forces’ or a dispersal

from ‘centrifugal forces’ depends on factors that differ by industry. This study suggests

the impact depends on truck transportation utilization and backward linkages. Travel

time estimates constructed by representing the US highway system as a network over

time and data on the spatial inequality of earnings are used for a panel estimation with

interactions, individual and time effects, and regional variation for identification.
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1 Introduction

By altering the landscape of transportation costs road systems facilitate the agglomeration

as well as dispersal of industries. A long literature exists examining the impact of roads on

the spatial distribution of economic activity (Chandra and Thompson, 2000; Michaels, 2008;

Rothenberg, 2011; Redding and Turner, 2014; Frye, 2016), but uncertainty remains about

how specific industries respond and what are the characteristics influencing their response.

Understanding the impact of road infrastructure is important for regional policy makers

as the spatial distribution of the amount and type of earnings has lasting implications for

structural inequality and regional divergence (Redding, 2005; Paredes et al., 2016; Niehbuhr

et al., 2012).

A strand of literature on agglomeration describes economic centripetal and centrifugal

forces that influence the relative locations of firms (Marshall, 1890; Fujita et al., 1999; Cook

et al., 2007; Pelegŕın and Bolancé, 2008). These forces are difficult to directly measure, but

industry characteristics creating sensitivity to the forces can be used as proxies to predict

the response. As the transportation costs change, the ways in which industries are sensitive

to the affected forces will influence the changes in spatial distributions.

In this paper I examine how the US Interstate Highway System impacted the spatial

distribution of different industries and characteristics that can explain the varying responses.

Based on location theory and the benefits of agglomeration and dispersal, I suggest that

industries with a higher truck transportation share of inputs and backwards linkage measure

are more likely to disperse in response to the reduction in travel time.

To measure the effect of the Interstate Highway System I construct a novel data set of

travel times between metropolitan regions in the US for each year between 1950 and 1993

using the completion dates of road segments to build edge weighted networks. The travel

time is an important component of the transportation cost between regions affecting the price

paid to drivers, supply timing, and inventory holding requirements. I add to the literature

examining detailed road data (Rothenberg, 2011; Faber, 2014; Donaldson and Hornbeck,
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2016; Alder, 2016; Jaworski et al., 2018; Morten and Oliveira, 2018) with my travel time

estimates and the methodology. By looking at the road system as a network with weighted

edges the marginal benefit of specific roads on travel times throughout the system can be

observed and used to examine many questions, although this paper focuses on the impact of

the aggregated changes on agglomeration.

Using data on county level earnings by industry in the US I construct a spatial GINI

index measuring how unequal the distribution of economic activity is across all counties for

each year. This index reveals how clustered or agglomerated different industries are and

is commonly used in research on spatial distribution (Rey and Smith, 2012; Sutton, 2012;

Panzera and Postiglione, 2019). This index does not tell us about the exact distribution

of activity, as multiple distributions can lead to the same spatial GINI, but changes in the

spatial GINI do tell us whether industries are becoming concentrated into fewer counties or

spreading out. This measure of agglomeration does not speak to location within counties

(Börjesson et al., 2019), nor does it speak to specialization within industries which is another

common indicator of agglomeration (O’Donoghue and Gleave, 2004).

I use a panel data set with interaction effects to detect the industry varying effect the

change in the travel time index has on the spatial GINI index. I perform robustness checks

including adjusting for county area, alternate measures of spatial inequality, additional con-

trols, and alternate regression specifications. I conduct simulations with artificial data veri-

fying the appropriateness of the preferred specification given the likelihood of lags and leads

in response.

Additionally I exploit regional variation in the timing and magnitude of road completion

to estimate the causal effect conditional on region, industry, and time effects controlling

for unobserved variables. The eight regions are as defined by the U.S. BEA for economic

comparison1. Due to regional factors orthogonal to the change in location of industries

such as varying state institutions, weather, terrain, and construction delays, different regions

1https://www.icip.iastate.edu/maps/refmaps/bea
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completed their roads at different times. If regions that built their roads earlier also observed

a change in spatial GINI earlier, than it is likely the change is caused by the roads.

I find that industries with a higher trucking share of inputs and a higher backwards

linkage disperse more when travel times are reduced. The average highway travel time

between metropolitan regions decreased by about 18%, with varying declines across regions.

The spatial GINI for total personal income declined slightly between 1969 and 1985, but

rose to its previous level by 2000 with little change afterward, while the spatial GINI for

population declined slightly until 1980 and has been slightly increasing ever since. This

combined with the significant movements in industry specific spatial GINI suggest there

is not a large change in the overall spatial distribution of economic activity, but there is

significant relocation of where specific types of industry occur.

The paper proceeds as follows: Section 2 discusses the theory of why different industries

will respond differently to an improvement in the road system, Section 3 describes the data

and methodology, Section 4 reports and discusses the estimation results, and Section 5

concludes.

2 Theoretical Background

Roads alter the time it takes to traverse an area, effectively warping space and bringing

regions closer together by facilitating the faster movement of cars and trucks. This reduction

in travel time lowers the cost of moving goods by lowering the wage paid to the drivers,

reducing the uncertainty associated with waiting, facilitating smoother production flows,

and reducing required inventories as stocks or parts can more quickly be replenished. The

last three effects are particularly important, as observed in the global rise of “just-in-time”

manufacturing and inventory management during the 1970s and 80s (Sayer, 1986; Brox and

Fader, 1997), as well as the premium placed on overnight shipping (Stecke and Zhao, 2007).

Although rail and water can typically transport materials at a lower cost per unit, the speed
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offered by roads is crucial for supply coordination, and the access provided by roads to

regions not adjacent to rail or water necessitate their use for the ‘first and last mile’ for

intermodal shipping.By providing access for vehicles and lowering the cost of transportation

between regions, roads play a crucial role in shaping the location decisions of firms.

Agglomeration is the clustering of economic activity in space. This applies to multiple

scales, including countries, cities, and districts. The benefits of agglomeration are aptly

summarized by Marshall (1890) who points to three sources: 1) knowledge spillovers—the

idea that information is ”in the air” and technical processes and innovation are propagated

through proximity by increased interactions, 2) pooled labor—the increased matching of

needs to skills for employers and employees from both having access to a larger pool, 3)

forward and backward linkages—the reduced costs from proximity to markets and sources

of inputs, as transport is costly. The third type is the most explored by the new economic

geography and ’market access’ literature (Fujita et al., 1999; Duranton et al., 2014; Don-

aldson and Hornbeck, 2016). We can think of these benefits as ’centripetal forces’ that pull

activities towards each other, resulting in clustering. However, being near other firms has a

trade-off—wagesand the price of land are pushed up due to competition, acting as ’centrifu-

gal forces’ pushing firms to locate away from clusters. Furthermore, proximity to multiple

sources of demand and inputs may be a relevant consideration pushing a plant away from

any particular market center and towards a point of centralized distribution, as elaborated

by Weber’s (1909) point of minimum transport.

Different industries have different sensitivities to each of these forces based on what they

do and how they do it. Thünen (1826) captured this idea with his model of agricultural land

use and this was extended by Alonso’s (1960) bid-rent theory; an example of which is shown in

Figure 1. The key idea is how much ’land rent’2 an industry is able to generate at a particular

location, based on the difference between the value of their product at the market and the

costs of inputs and transportation incurred from operating at that position. Industries’ that

2Thünen defines land rent as value generated in excess of all input costs, although there are some
competing definitions of this concept
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Figure 1: A Bid-Rent Curve

generate a higher rent for any given location are more likely to locate there since they can

outbid other types of industry. In its simplest form we conceive a single market existing at

a point in a uniform plane where economic activity can take place, but it can be extended

to incorporate multiple market centers and surfaces with varying transportation costs such

as a river or road system. For the single market framework, the vertical intercept represents

the rent an industry can offer for being at the center of the market—the point where the

benefits of agglomeration are the highest, and the slope represents how the rent an industry

can offer changes with distance from the market—a combination of the transportation cost

for that industries’ product and how the total cost of inputs changes with distance. Industries

that benefit from agglomeration tend towards the market, and industries with goods that

can be moved cheaply tend to be pushed away from the market. In a multiple market

framework this is more complicated as firms within industries may choose to deal with just

one market or multiple markets, but still we would observe that industries benefiting more

from agglomeration would tend towards market centers and industries with costs that decline
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more rapidly with distance would locate away from market centers. In reality markets do

not operate at single points in space, but the same logic applies for distributed markets as

long as there is some varying concentration of market activity across space.

From this lens, an improvement in the road system does two things. By lowering the cost

of transporting materials, the slope of the bid-rent curve is flattened as it is less costly to

be located away from the market center. This effect pushes industries outward from market

centers and makes more distant locations viable points of operation. However, an improve-

ment in the road system also facilitates increased access to a market center as customers and

employees from a wider radius can commute in. This increases the agglomeration benefits

of an area by creating a larger labor pool firms can pull from, increasing the suite of in-

teractions that lead to knowledge spillovers, and increasing market accessibility. Effectively,

the market center becomes larger and has increased capacity for agglomeration. By lowering

transportation costs and facilitating access, improved roads push some industries out and

pull other industries in.

Industries that have a larger truck transportation share of inputs benefit more from the

decline in transportation costs due to improvements to the road system. While the reduction

in transportation costs reduces the slope of the bid-rent curve for all industries, the slope

becomes more flat for industries that utilize trucking more. This makes it comparatively less

costly for these industries to be farther away and hence pushes them outward, away from

the market centers/central business districts. Based on this, we suggest the main hypothesis

of the paper—that the coefficient on the interaction term between travel time and truck

transport share of inputs will be positive.

The stage in the product life-cycle is an additional influence on the sensitivity to the

benefits of agglomeration and dispersal (Eriksson et al, 2020). The conception of a product

life-cycle distinguishes four stages in a product’s life: introduction, growth, maturity, and

saturation. The first two and last two can be grouped together as early and late respec-

tively. Early stage products involve design, the supply chain is not well formed, demand
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must be created, and there is low competition; thus they benefit more from the knowledge

spillovers and access to pooled high skilled labor of agglomeration. Late stage products face

high competition and low prices, deal with complex supply chains and mass production, and

profitability/survival is more based on production/distribution efficiency— thus they benefit

more from the lower wages, cost of land, and centralized distribution offered by dispersal.

When the road is improved both agglomeration and dispersal are further facilitated, exas-

perating the location preferences for both early and late stage products. A direct measure of

life-cycle stage is not available but backwards linkage, the total increase in production stem-

ming from an increase in the final demand for a particular industry because of the additional

inputs required to produce it, the additional inputs required to produce those, and so on, is

a reasonable proxy. If an industry is in late stage production with a complex supply chain

involving many industries as inputs, this will appear as a higher number in this measure, as

late stage industries tend to have lower profit margins from the high competition. Because

the inputs and outputs are measured in dollars, as the price of the output decreases from

increased competition the ratio of inputs to outputs will be higher, therefore for a given

increase in output there will be a larger increase in inputs, and hence a higher measure of

backward linkage. This effect could be mitigated if the industry inputs are moving through

the life-cycle at the same time and undergoing a similar process, or if the reduction in indus-

try input use from increased efficiency is greater than the reduction in price from increased

competition.

In summary, because of the differing effects of centripetal and centrifugal economic forces

on industries, when the road is improved we suspect that industries that utilize trucking more

will disperse, industries categorized as information services and material transformations will

agglomerate and disperse respectively, and industries dealing in early and late stage products

will agglomerate and disperse respectively.
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3 Data and Method

The Interstate Highway System began construction in 1956, although the call for an updated

national highway system had been building since the 1930’s (Weingroff, 2017). While there

was already a sizeable road system in place and most places could be accessed, the road

conditions were often poor3, many of them unpaved. The Interstate standards enabled

high speed travel due to the quality of the surface, the curvature, sight distance, grade and

superelevation design restrictions, the minimum of two lanes in each direction separated by

a median, and the limited access restriction with no stop lights or driveways. In 1955 the

US had around 3,418,214 miles of public roads (US DOT, 1985), and although only 48,440

miles were eventually constructed as part of the Interstate System it carries about 20% of

the nation’s traffic (Weingroff, 2006).

The Interstate Highway System can be viewed as accomplishing two things: 1) connecting

and providing or improving access to regions, 2) lowering the cost of moving goods and

people through reductions in travel time and facilitating larger trucks. The key statistic I

utilize is the average transportation time between metropolitan regions for each year of its

construction.

I build an edge-weighted network representation of the US road system for each year

between 1950 and 1993 as the Interstate Highway System was developed and use this to esti-

mate the travel times between metropolitan statistical areas with a shortest path algorithm.

I do this by combining two geographic information system (GIS) road files and converting

them to an edge-weighted network that the Dijkstra algorithm can be performed on.

The first GIS file is formed by isolating the interstate highways from the PA NHS 2012

shapefile4 detailing all US roads at that time. The second GIS shape file I form by manually

tracing a 1954 map image5 produced by the US government detailing the principle highways

3see Figure 6 in the appendix
4Accessed from the FHWA website,

https://www.fhwa.dot.gov/policyinformation/hpms/shapefiles_2017.cfm
5https://www.raremaps.com/gallery/detail/38608/a-pictorial-map-of-the-united-states-of-america-showing-pri-general-drafting-company
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and arterials in existence at that time, what we refer to now as the US numbered highways. I

approach the road system in this way because in addition to entirely new roads the Interstate

Highway System replaced many segments of the previous highway system, so many portions

of Interstate Highways were still beneficial although the entire road was not yet completed.

This method does not include additional non-interstate highways that were constructed

during this period, which biases the travel time reduction estimates downward.

Next, using the “PR-511” dataset, a construction log6 detailing the completion date of

each Interstate segment, the active segments of Interstate Highway are overlaid with the

pre-existing highway system to construct a representation of the total highway system for

each year between 1953-1994.7

With the highway system in place and converted to a network, the Dijkstra algorithm8

finds the shortest weighted path between any two points in the network to estimate the

travel time for each year. The weights on each road segment are the travel time based on

the distance and speed. 65 mph is assumed for Interstate Highways; 50 mph is assumed for

the non-interstate highways, differing slightly from the assumptions made in Jaworski et al

(2018)9. This is done for every metropolitan-statistical-area (MSA) pair to generate a travel

time matrix for each year. Figure 2 shows the average of this travel time10index matrix for

each year. On average the Interstate Highway System reduced travel times between MSA’s

by about 18%, although the actual reduction in travel time (unobserved) is partially due to

vehicle improvements11.

6This dataset was digitized and made available by Baum-Snow (2007), available here
https://www.dropbox.com/s/wq5cp6gm4ocxjo4/CD-ROM.rar?dl=0

7The PR-511 has a range of statuses 1-6. Status 1 is fully complete and up to standards. Status 2 is
mostly complete and open to traffic, and this is the measure of completion used.

8I use the python modules ’networkx’ to shape the network, and ’igraph’ to implement the Dijkstra.
9These speed assumptions are a simplification based on travel time estimates provided by AAA maps

from 1955, 1996, and 2018, to isolate the speed changes from the road and vehicle improvements. Routes
without an interstate segment experienced a rise in speed of about 5mph, likely from improvements in car
technology, while routes receiving interstate segments experienced rises in speed between 10-20mph, with
variance likely due to congestion. Thanks to John King for providing his personal copy of the 1955 AAA
map.

10The units are coordinate distance per mph
11There were notable policy changes during this period—the National Maximum Speed Law established

in 1974 and the Motor Carrier Act of 1980. I dismiss the National Maximum Speed Law as it was reportedly
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Figure 2: Average Travel Time between MSA’s

For the regional travel time estimates, I take the average travel time from each county

within that region to every other county within 425 miles, chosen based on the average

distance for over-night shipping availability. This number reflects the travel time within the

region and to counties near the edge of the region. The regional travel times are normalized

to the national travel times to facilitate comparison of regression coefficients.

My data adds to the literature explicitly representing road systems as a network of

transportation costs, such as Rothenberg (2011) who utilizes a mapping between road quality

and speeds to estimate the travel time changes in Indonesia, Faber (2014) who constructs

least cost path spanning tree networks examining China’s National Trunk Highway System,

Donaldson and Hornbeck (2016) who calculate lowest-cost county-to-county freight routes in

the US, Alder (2016) who constructs a grid of cells with different speeds to use a shortest path

algorithm examining bilateral travel times in India, and Jaworski et al (2018) who utilize

decennial maps with surface information, mileage, and travel time estimates to construct

internal trade costs for the US. The benefit of my method is the level of detail at the

annual level, allowing a wide range of travel times to be estimated and compared with other

variables changing during this time frame. Furthermore, the regional variation in the timing

not followed or enforced. The Motor Carrier Act of 1980 deregulating the trucking industry had many
impacts potentially lowering transportation costs, which would bias the estimate of the effect of the change
in travel time on agglomeration upwards. Similarly, congestion from traffic is unaccounted for, which would
bias the estimated travel times upward and therefore the effect on agglomeration downwards
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Figure 3: Spatial GINI for Select Industries

and magnitude of road completion can be exploited to parse out the causal effect based on

the timing of response in the dependent variable, conditional on unobserved variables being

controlled for through the use of effects.

Using detailed BEA data on county earnings by industry I construct a measure of spatial

inequality over time using the same principle as the GINI coefficient of income inequality. For

50 SIC defined industries I calculate the cumulative share of the nation’s income from each of

the 3081 US counties, and arrange these in order of lowest to highest to form the distribution

from which the GINI coefficient can be calculated. Figure 4 shows the distribution for farming

and non-farming income in 1969. The non-farming income is more bowed in, revealing the

income is concentrated in fewer counties, indicating a higher degree of spatial inequality.

The spatial GINI is calculated for each industry for each year between 1969-200012 , some

sample industries are shown in Figure 5. The earnings data are reported based on where the

earner lives, so any commuting across counties will bias the estimate downward.

12For some industries negative earnings appear at times, distorting the range of the GINI. These obser-
vations are set to zero.
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Figure 6 highlights the change in spatial GINI from 1969 to 2000 for the industries. A

striking feature is the dispersal of industries like rubber and miscellaneous plastics, fabricated

metal, lumber and wood products, stone, clay, and glass products, industry machinery and

equipment, and miscellaneous manufacturing—all industries dealing with physical goods.

On the other side we see the agglomeration of industries such as legal services, depository

and nondepository institutions, and communications—industries that deal with information.

Some industries dealing with physical goods that go against this trend include oil and

gas extraction, forestry and fishing, mining, textile mills, and coal production. But these are

industries directly dealing with the extraction or cultivation of natural resources and may be

tied to specific locations, and thus not as susceptible to the changing dispersal forces as much

as the changing availability of sites from resources running out or being discovered. Another

oddity is farming, which saw the largest increase in agglomeration of all the industries, but I

suspect this is more from the farming specific technology changes from the Green Revolution

than changes in the road system. Retail trade agglomerated while wholesale trade dispersed,

aligning with the prediction of response from the road improvement based on their varying

use of land and preference for centralized distribution. The dispersal of business services and

insurance carriers highlights another tension–the benefits of proximity to information hubs

and the benefit of moving to where the customers are located. As Hoover and Vernon (1959)

discussed in their analysis of the distribution of people and jobs in the New York Metropolitan

region certain operations, such as banking and life insurance, become standardized they find

less of a need to be near the information sharing hubs, and more of a need to locate near

their increasingly suburbanized customer base, especially as technology like the telephone

and internet facilitate the exchange of information across distances. Information industries

under this sort of influence may still disperse despite the increased ability to cluster.
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These spatial GINI estimates fit into the literature examining measures of spatial distri-

bution including Rey and Smith (2012) who introduce a spatial decomposition of the GINI

coefficient that exploits the contiguity matrix, Sutton (2012) who constructs spatial GINI

from nighttime satellite imagery and population density, and Panzera and Postiglione (2019)

who propose an index based on the GINI that introduces regional importance weighting.

The truck transportation share of inputs is calculated from the BEA input-output ’use’

table, detailing each industries use of other industries in dollars. Ideally, we would like a

measure that reflects how much an industry relies on truck transportation for both inputs

and outputs, and it is not clear how this is attributed in the input-output table.13

The theory suggests that the stage in the product life-cycle will impact agglomeration

and dispersal. As a proxy for these I utilize an industry measure of ’Rasmussen backward

linkages’—the column sum of the ’Leontief inverse’ or ’total requirements matrix’ calculated

from the input-output table of industry interactions. This measure reflects the total increase

in production stemming from an increase in the final demand for a particular industry

because of the additional inputs required to produce it, the additional inputs required to

produce those, and so on.

3.1 Method

In this section I layout the methodology used, potential issues, and how I address them.

I utilize a fixed effect regression with interaction terms to test if changes in travel time

change the spatial GINI and if differences between industries explain the differences in the

change of the spatial GINI across industries. Furthermore, I construct ’meaningful’ marginal

effects and standard errors as in Brambor, Clark and Golder (2014), I verify the results are

robust to alternate specifications and measures of agglomeration, and I estimate a regional

13The input-output use table uses the NAICS industry codes, while the BEA county earnings uses the
SIC industry code. Industries were matched based on the US BLS concordance guide and unmatched
industries were dropped.
https://www.bls.gov/bls/exit_BLS.htm?a=true&url=https://www.census.gov/eos/www/naics/

concordances/2002_NAICS_to_1987_SIC.xls
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form of the model to control for time effects and utilize variation in road construction.

I estimate a model of the following form:

spatialGINIit = α + αi + β0ttt + β1tsit + β2blit + β3ttttsit + β4tttblit + εit

where ttt is the index of average travel time between MSA’s, tsit is the truck transportation

share of inputs, and blit is the measure of backward linkage for industry i at year t.

If tt and ts are not endogenous to travel time, the effect of reducing travel time on the

spatialGINI is

∂spatialGINIit
∂ttt

= β0
(−)

+ β3tsit
(+)

+ β4blit
(+)

where the hypothesized signs for the coefficients are noted. Conditional on a trucking input

share of zero and a backwards linkage of zero, we expect the reduction in travel time to

lead to an increase in the spatial GINI, that is, agglomeration. For industries with a high

trucking input share and high backwards linkage, this effect will be mitigated to the point

of being reversed so that a reduction in travel time leads to a decrease in the spatial GINI,

that is, dispersion. If trucking input share and backwards linkage are changing in response

to the changes in travel time, the marginal effect is more complicated, but this is unlikely as

the change in these variables across time is negligible (I explore this more in the appendix).

As detailed in Brambor, Clark and Golder (2014), when including interaction terms for

testing conditional hypotheses, care must be taken in the implementation and interpretation

of the results. Specifically, the constitutive effects must be included and must not be in-

terpreted as unconditional marginal effects, and ‘meaningful’ marginal effects and standard

errors should be reported. That is, for the specification above, the appropriate standard

error formulation for the marginal effect of travel time is shown below.

15



σ̂sgit =

√
var(β̂0) + ts2

itvar(β̂3) + bl2itvar(β̂4) + 2tsitcov(β̂0β̂3) + 2blitcov(β̂0β̂4) + 2tsitblitcov(β̂3β̂4)

When regressing non-stationary trends spurious correlation is a major concern, however

in this case I find it appropriate and necessary to address another problem. Because firms are

forward looking, the road construction was generally known in advance, the plant lifetimes

can potentially be very long, and there are potential benefits to being a first mover, it is

highly likely that some firms would relocate or expand operations in anticipation of the road

completion. On the other hand, relocating is expensive, and firms may prefer to postpone

relocation or expansion as the desirability of locations depends on the changing travel times

as well as the locations of other firms. That is, the effect of the changing travel time

index could lead or lag behind the effect on spatial GINI and the timing could vary by

industry. This is supported by cross-correlation results between the industry specific spatial

GINI’s and the lagged travel time index (see Figure 9 in the appendix). Because of this,

transforming the series with first difference requires the regression to precisely specify the

leads and lags structure, a well-known problem in the literature (Hannan and Robinson,

1973; Andrews and Fair, 1992; Vaisey and Miles, 2014). By regressing the levels and not

specifying leads or lags however, the long run effect is captured. I perform simulations with

artificial data to verify the efficacy of this specification, finding that the levels regression

with only contemporaneous variables accurately estimates the true long run effect regardless

of the leads and lags distribution, while the first difference regression parameter estimates

are extremely sensitive to the lead and lag specification. See the Appendix C for more

information on this issue and the simulation results.

This still leaves the possibility of an unobserved change across time, such as technology

change leading to industry restructuring, being responsible for the change in spatial distri-

bution of industries. I address this in two ways. First, the Interstate Highway was completed
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in 1993 and the spatial GINI is not changing by as much after the year 200014. Even after

accounting for a potential lagged response, unless the unobserved change also finished around

the time of the Interstate completion, this suggests the roads did have an effect. Second, by

performing the same analysis at the regional level any unobserved time effects that affect

all regions can be controlled for while facilitating estimation due to the variation in travel

time across regions. The combination of these would require that in order for the change in

travel time to be spuriously correlated there would have to be an unobserved simultaneous

change across time that concludes around the same time as highway construction and also

varies across regions in the same way the road completion dates do.

The regional specification adds a dimension to the dependent variable, the spatial GINI,

as well as the travel time as shown below.

spatialGINIitk = α + αi + +αk + β0tttk + β1tsit + β2blit + β3tttktsit + β4tttkblit + εitk

In addition to facilitating the time effect to control for unobserved variables affecting all

regions, this specification captures the regional variation in magnitude and timing of com-

pletion in the coefficients on travel time. Intuitively, if regions that complete their highway

portion earlier also agglomerate/disperse earlier, than this suggests that the change is due

to the road completion, and this will be picked up by the coefficients. This identification

strategy will be valid unless the unobserved parallel trend also varies at the state level in the

same way as completion timing, or if there are unobserved region specific variables changing

that happen to cause a change in spatial distribution at the same time the roads are being

completed.15

14The variance of the change in spatial GINI from 1969 to 2000 across industries is .0014, while it is
.00063 from 2001 to 2017. Furthermore, the average of the absolute value of the change in spatial GINI is
.028 and .013 for 1969-2000 and 2001-2017 respectively

15in order to protect business confidentiality, many county earnings are suppressed for certain industries.
The suppression rate in a given year varies from less than 5% to 50% depending on the industry. This should
not interfere with the overall patterns of spatial distribution but when looking at the state or regional level
these suppressions become a significant issue generating movements in the data that are more a product of

17



To verify the robustness of the results to variable definitions I perform additional tests.

The spatial GINI discussed is based on county level earnings, but some counties have sig-

nificantly different land areas, which could obscure the change in clustering when economic

activity moves between counties of different sizes. To account for this I compute another set

of spatial GINI’s based on county earnings per land area. Additionally, I construct alternate

measures of spatial inequality: the Theil index and the 80:40 ratio, to verify the robustness

of the results. I also add controls for the boating, rail, and air transport shares of input.

These results support the central finding and can be seen in Appendix B.

4 Result

The regression results for the national regression with various specifications are shown below

in Table 1. From the coefficients we can see that a reduction in travel time is correlated

with increased clustering, but for industries with a high truck transportation share of inputs

and a high measure of backward linkage this is smaller and can even be negative, implying

a correlation with dispersal rather than agglomeration. This is similar to the results in

Rothenberg (2011) who finds that road surface quality improvements in Indonesia lead to a

dispersal of durable goods manufacturers relative to nondurable goods manufacturers using

the Ellison and Glaeser index.

The results are similar for both random and fixed effects, suggesting heterogeneity bias is

not a problem, and this is further validated by the estimator from Bell and Jones (2015). As

discussed, the first difference estimation is not reliable without knowledge of the structure

of the response leads and lags.

The standard errors and marginal effects are shown by industry in Figure 7. The average

z-score of the marginal effect of tt across time and across industries is 4.08 with a standard

deviation of 1.99, indicating that the estimate is statistically significant for most industries

suppression policy change than actual industry relocation. The regional spatial GINI’s were obtained with
the cooperation of the BEA running my algorithm on the unsuppressed data, but because of this the source
data is not available for replication.
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Table 1: Estimation Results

Coef. RE FE1 REWB FE2 FE3 FD RS

tt -.81*** -.82*** -.82*** - -.74*** .24 -1.29***
(.12) (.12) (.12) (.13) (.41) (.081)

ts -1.31*** -1.27*** -1.27*** -2.85*** -1.23*** -1.24* -.50***
(.23) (.23) (.23) (.90) (.23) (.73) (.122)

bl -.15*** -.16*** -.15*** -.18* -.15*** .14* -.26***
(.02) (.02) (.02) (.1) (.02) (.07) (.014)

tt*ts 3.58*** 3.50*** 3.50*** 6.85*** 3.45*** 3.69* 1.63***
(.56) (.56) (.56) (2.44) (.56) (2.01) (.30)

tt*bl .42*** .42*** .42*** .52* .43*** -.30 .72***
(.06) (.06) (.06) (.28) (.06) (.19) (.037)

Signif. codes: .01 ’***’ .05 ’**’ .1 ’*’
tt-travel time, ts-trucking share, bl -backward linkage
FE1 is individual ’within’ fixed effects
REWB is random effects with industry averages to capture the between group effects
while controlling for heterogeneity bias as discussed in Bell and Jones (2015)
FE2 is time ’within’ fixed effects
FE3 is two ways ’within’ fixed effects
FD is first difference
RS is the regional variation specification

most of the time. While it is beneficial to incorporate the noise from each of the interacting

terms into the standard errors, in this context because the travel time is constant across

industries the variations in marginal effect within industry are driven by changes in ts and

bl.

The estimated marginal effects of travel time echo support for the theories discussed

due to the signs of the estimated coefficients. Most industries have a positive predicted

marginal effect, suggesting they are dispersing in response to the reduction in travel time.

This includes almost every industry involved in producing physical goods as they generally

have a higher trucking share. Industries that have a low measure of backward linkage (they

do not pull on as many industries for inputs) are more likely to have a negative predicted

marginal effect, consistent with the benefits of centralized distribution from dispersal being

larger for industries with high backward linkage. These marginal effects are overall consistent

with Redding and Turner (2014) who survey the existing literature finding that highways
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Figure 5: Marginal Effect of Travel Time on Spatial GINI and Standard Errors by Industry

tend to decentralize urban populations and manufacturing activity while different sectors

appear to respond differently.

The regressions for spatial GINI with land area control, alternate measures, and addi-

tional controls support the central findings and can be found in Appendix B.

The coefficients from this regression support the hypothesis as the signs are unchanged

and the standard error diminishes. By adding the regional variation in travel time and

spatial GINI the coefficients reflect the differences in timing and magnitude of the change,

and the time effects control for unobserved variables affecting all industries and regions.

The magnitude of travel time and backwards linkage is increased, while the magnitude of

trucking share of inputs diminishes, suggesting that within regions these variables have

slightly different importance which may stem from the prominence of different types of

industries in each region.
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5 Conclusion

Industries are subject to economic centripetal and centrifugal forces influencing the patterns

of their relative positions in space. Differences between industries will result in differing sen-

sitivities to these forces. As the road system is improved, both agglomeration and dispersal

are facilitated, leading to some industries clustering more densely in fewer counties and some

industries spreading throughout more counties. These differing responses can partially be

explained by truck transportation utilization and backward linkages—industries with higher

measures in both tend to disperse in response to a reduction in travel times.

This finding is relevant for countries building limited access highway systems as well

as regions building roads, as they should consider the impact on the spatial distribution

of earnings and structural inequality. As certain firms increasingly cluster in population

centers while other firms disperse to capture lower wages the inequality between regions is

exacerbated. On average across industries earnings per person in city counties was 59%

higher than in rural counties in 1969, and in 2000 this ratio rose to 76% while the population

distribution did not change substantially. While roads connect regions they also drive them

apart. Like other trade cost reductions contributing to globalization, roads bring benefits

that may need to be tempered with other policies.

This paper expands the understanding of how the clustering of economic activity responds

to changes in the road system and contributes new data on the changes in travel time in

the US from the construction of the Interstate Highway System. The spatial GINI is not a

novel concept, but the application in the context of road improvements is original and may

be useful to other researchers.

These findings are robust to multiple specifications, but there are limits to the interpreta-

tion. This does not tell us about where economic growth will occur, only about the response

in clustering behavior. There are still challenges to understanding the patterns of spatial

distribution such as the importance of history, the tendency for positive feedback, and the

influence of new technologies such as phones, computers, and the internet.
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The high detail of the travel time data set leaves opportunities for future research, in-

cluding examining metrics of spatial distribution other than the spatial GINI, examining the

market access of different regions and how changes influenced economic growth, as well as

the effect of the travel time on other data such as traffic congestion, patterns of trade, and

the impact on the changing economic make-up of regions.
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Appendix A: Additional Figures

Figure 6: Surface Quality of US Roads, Source: US DOT 1985
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Name(SIC) mean(sGINI) sGINI 69-96 mean(ts) ts 69-96 mean(bl) bl 69-96

Farmearnings 0.625 0.123 0.013 0.007 2.197 0.048

Agriculturalservicesforestryandfishing 0.757 0.054 0.012 0.007 1.88 -0.21

Oilandgasextraction 0.936 0.041 0.003 0.003 1.706 0.102

Mining 0.872 0.025 0.024 -0.01 2.089 -0.046

Electricgasandsanitaryservices 0.816 0.02 0.018 -0.008 1.606 -0.079

Construction 0.811 -0.018 0.02 0.001 1.978 -0.015

Lumberandwoodproducts 0.776 -0.064 0.013 0.012 2.332 0.129

Stoneclayandglassproducts 0.833 -0.032 0.026 -0.002 2.095 0.201

Primarymetalindustries 0.955 -0.028 0.021 0.005 2.334 -0.084

Fabricatedmetalproducts 0.892 -0.066 0.012 0 2.166 -0.014

Industrialmachineryandequipment 0.888 -0.046 0.01 0.002 2.085 0.364

Electronicandotherelectricequipment 0.945 -0.023 0.007 0 2.242 0.016

Motorvehiclesandequipment 0.977 -0.031 0.01 0.001 2.655 0.275

Othertransportationequipment 0.982 -0.011 0.007 0.002 2.406 -0.046

Furnitureandfixtures 0.943 -0.02 0.013 0.007 2.157 0.145

Miscellaneousmanufacturingindustries 0.95 -0.036 0.018 -0.001 2.185 -0.154

Foodandkindredproducts 0.833 -0.01 0.018 0.003 2.518 0.143

Textilemillproducts 0.955 0.001 0.015 0.006 2.514 0.118

Apparelandothertextileproducts 0.9 -0.013 0.012 0.006 2.428 0.052

Paperandalliedproducts 0.939 -0.02 0.017 0.004 2.317 -0.002

Printingandpublishing 0.874 -0.012 0.016 -0.001 2.71 0.083

Petroleumandcoalproducts 0.971 -0.009 0.004 0.002 2.554 -0.167

Chemicalsandalliedproducts 0.945 -0.014 0.014 0.001 2.164 0.082

Rubberandmiscellaneousplasticsproducts 0.916 -0.094 0.014 0.002 2.175 0.413

Wholesaletrade 0.88 -0.019 0.01 -0.005 1.458 0.191

Retailtrade 0.804 0.01 0.011 0.002 1.564 0.043

Transportationbyair 0.979 -0.024 0.012 0.01 1.97 -0.14

Railroadtransportation 0.858 0.024 0.012 -0.012 1.753 0.237

Watertransportation 0.98 -0.016 0.004 -0.01 2.057 0.182

Truckingandwarehousing 0.803 -0.065 0.333 -0.195 1.861 0.034

Localandinterurbanpassengertransit 0.913 -0.031 0.022 -0.025 1.815 -0.104

Pipelinesexceptnaturalgas 0.991 0.003 0.014 -0.015 2.106 -0.004

Transportationservices 0.941 -0.03 0.011 0.053 1.506 0.007

Motionpictures 0.971 -0.009 0.007 -0.005 1.527 0.444

Communications 0.877 0.028 0.005 -0.005 1.606 0.074

Securityandcommoditybrokers 0.982 -0.018 0.005 -0.003 1.659 -0.111

Insurancecarriers 0.928 -0.019 0 -0.001 1.862 -0.167

Depositoryandnondepositoryinstitutions 0.848 0.03 0.001 -0.001 2.165 -0.129

Realestate 0.919 -0.008 0.006 -0.014 1.365 0.115

Legalservices 0.908 0.039 0.007 -0.005 1.538 -0.166

Engineeringandmanagementservices11 0.923 X 0.01 -0.012 1.296 0.107

Businessservices 0.918 -0.012 0.001 0.001 1.524 0.104

Educationalservices 0.939 -0.01 0.011 -0.007 1.68 -0.256

Healthservices 0.851 0.009 0.008 0.001 1.461 0.054

Socialservices10 0.833 X 0.021 -0.041 1.672 0.229

Museumsbotanicalzoologicalgardens 0.987 -0.02 0.004 -0.002 1.709 -0.275

Amusementandrecreationservices 0.881 0.026 0.007 -0.002 1.484 0.225

Hotelsandotherlodgingplaces 0.878 0.022 0.009 -0.005 1.922 0.15

Foodstores 0.787 -0.017 0.012 -0.006 1.925 -0.141

Miscellaneousservices 0.875 -0.082 0.009 -0.003 1.519 -0.046
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Name(SIC) Name(NCIS)

Farmearnings Farms

Agriculturalservicesforestryandfishing Forestryfishingandrelatedactivities

Oilandgasextraction Oilandgasextraction

Mining Miningexceptoilandgas

Electricgasandsanitaryservices Utilities

Construction Construction

Lumberandwoodproducts Woodproducts

Stoneclayandglassproducts Nonmetallicmineralproducts

Primarymetalindustries Primarymetals

Fabricatedmetalproducts Fabricatedmetalproducts

Industrialmachineryandequipment Machinery

Electronicandotherelectricequipment Computerandelectronicproducts

Motorvehiclesandequipment Motorvehiclesbodiesandtrailersandparts

Othertransportationequipment Othertransportationequipment

Furnitureandfixtures Furnitureandrelatedproducts

Miscellaneousmanufacturingindustries Miscellaneousmanufacturing

Foodandkindredproducts Foodandbeverageandtobaccoproducts

Textilemillproducts Textilemillsandtextileproductmills

Apparelandothertextileproducts Apparelandleatherandalliedproducts

Paperandalliedproducts Paperproducts

Printingandpublishing Printingandrelatedsupportactivities

Petroleumandcoalproducts Petroleumandcoalproducts

Chemicalsandalliedproducts Chemicalproducts

Rubberandmiscellaneousplasticsproducts Plasticsandrubberproducts

Wholesaletrade Wholesaletrade

Retailtrade Retailtrade

Transportationbyair Airtransportation

Railroadtransportation Railtransportation

Watertransportation Watertransportation

Truckingandwarehousing Trucktransportation

Localandinterurbanpassengertransit Transitandgroundpassengertransportation

Pipelinesexceptnaturalgas Pipelinetransportation

Transportationservices Othertransportationandsupportactivities

Motionpictures Motionpictureandsoundrecordingindustries

Communications Broadcastingandtelecommunications

Securityandcommoditybrokers Securitiescommoditycontractsandinvestments

Insurancecarriers Insurancecarriersandrelatedactivities

Depositoryandnondepositoryinstitutions Fundstrustsandotherfinancialvehicles

Realestate Realestate

Legalservices Legalservices

Engineeringandmanagementservices11 Miscellaneousprofessionalscientificandtechnicalservices

Businessservices Managementofcompaniesandenterprises

Educationalservices Educationalservices

Healthservices Ambulatoryhealthcareservices

Socialservices10 Socialassistance

Museumsbotanicalzoologicalgardens Performingartsspectatorsportsmuseumsandrelatedactivities

Amusementandrecreationservices Amusementsgamblingandrecreationindustries

Hotelsandotherlodgingplaces Accommodation

Foodstores Foodservicesanddrinkingplaces

Miscellaneousservices Otherservicesexceptgovernment
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Appendix B. Robustness

Table 3: Regressions with a Time Trend
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Table 4: Alternate Measures and Controls

Controls Without bl Theil 80:40

Coef. RE FE1 RE FE1 RE FE1 RE FE1

α 1.09 - .89 - 6.55 - 226 -
(.05) (.04) (.85) (13.6)

tt -.57 -.56 -.04*** -.05*** -13.9 -13.59 -621 -617
(.13) (.13) (.04) (.04) (2.25) (2.24) (36.3) (36.3)

ts -.75 -.63 -.70 -.58* -10.0* -7.77** -108** -81.0***
(.24) (.24) (.24) (.24) (4.22) (4.35) (64.7) (69.4)

bs 7.89* 7.96* 8.58* 8.65* 84.0*** 80.4*** -4060 -3940
(3.56) (3.56) (3.58) (3.58) (63.9) (63.9) (1000) (1010)

rs 3.18 3.61 2.64* 3.10 31.4*** 42.7* -850 -750*
(1.12) (1.12) (1.12) (1.12) (19.85 (20.1) (308) (319)

as 1.07*** 1.19*** 1.96*** 2.05** 104 105 -21.3*** -31.9***
(1.22) (1.22) (1.21) (1.21) (20.9) (20.8) (347) (347)

bl -.10 -.10 - - -3.09 -2.93 -72.6 -68.9
(.02) (.02) (.43) (.43) (6.84) (6.92)

tt*ts 2.27 2.02 2.10 1.86 24.5* 19.6** 295** 239***
(.59) (.59) (.59) (.59) (10.4) (10.6) (161) (168)

tt*bs -21.0* -21.2* -23.0* -23.1* -248*** -239*** 10600 10400
(9.03) (9.02) (9.1) (9.06) (162) (162) (2540) (2560)

tt*rs -4.35*** -5.06** -2.30*** -3.10*** -93.2** -111* 2150 2040
(2.75) (2.75) (2.72) (2.72) (49.1) (49.2) (771) (781)

tt*as -2.75*** -3.09*** -5.1*** -5.36*** -291 -296 37.4*** 49.5***
(3.29) (3.29) (3.26) (3.25) (56.3) (56.1) (933) (935)

tt*bl .28 .27 - - 9.30 9.00 211 206
(.06) (.06) (1.13) (1.13) (18.2) (18.3)

R2
adj .13 .09 .12 .08 .13 .11 .44 .44

FE1 is individual ’within’ fixed effects
Removing the trucking industry makes ts large significant in 80:40 and Theil (ts outlier)
Signif. codes: .01 ’ ’ .05 ’*’ .1 ’**’ 1 ’***’ (the stars are reversed)
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Table 5: Regression with Control for County Land Area
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Appendix C. Empirical Specification

On Lags and Leads

In considering the impact of improving the road system on the spatial distribution of industry

it is reasonable to believe the effect could lead or lag. Because firms are forward looking,

the road construction was generally known in advance, the plant lifetimes can potentially be

very long, and there are potential benefits to being a first mover, it seems probable that some

firms would relocate or expand operations in anticipation of the road completion. On the

other hand, relocating is expensive, and firms may prefer to postpone relocation or expansion

as the desirability of locations depends on the changing travel times as well as the locations

of other firms.

The states were required to submit the completion status for the various segments of the

Interstate Highway System as it was constructed. The status categories are:

1—fully completed and open to traffic,

2—mostly complete and open to traffic,

3—under construction and not open to traffic,

4—planning, specification, estimates, contracting, right-of-way acquisitions underway,

5—mileage designation underway (public hearings, route location studies).

Based on changes between these statuses (for which only parts of the sample are represented),

the average time from construction to opening was 5 years (3→2 or 1, 14% of observations)

the average time from planning to opening was 18 years (4→2 or 1, 14% of observations)

the average time from designation to opening was 4 years (5→2 or 1, 52% of observations).

This information could be used to inform the leads structure, as seemingly firms should

have knowledge of where the road will be about 4 or 5 years ahead of time. A lag structure in

this case is not immediately apparent but is nevertheless important as misspecification can

bias coefficients and even flip the sign of the coefficient as shown in Vaisey and Miles (2014).

A common practice is to try multiple lag structures and see which one performs best under

a criteria such as the Akaike information criterion (AIC) or Schwartz information criterion

(BIC), however this does not solve the problems presented by misspecification. Furthermore,

this approach underreports the standard errors, as recognized in Schmidt (1973) and Frost

(1975), typically being computed as though the lag length is fixed. Some demo results are

presented here to see the implications of this issue.

Using explanatory lags is common in the reduced form roads literature, such as Li and

Whitaker (2018) and Jiwattanakulpaisarn et al (2011), while using explanatory leads is less

common, Leduc and Wilson (2012) being the only example I know of. In the market access

literature, lags are not commonly utilized as the economic structural model is not dynamic.
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Andrews and Fair (1992) present a method for adjusting the standard errors of coefficient

estimates from the polynomial distributed lag technique when the lag length is uncertain.

By allowing the lags to be continuous (with a mapping to discrete) and specifying the lag

length as a parameter, the regression function is differentiable with respect to the lag length

and the effect from changing the lag length can be included in the standard errors.

Below are the results of estimations with varying lag lengths, using generated data, where

X is a trend with noise and ε ∼ N(0, 200)

Yt = +ß0Xt + ß1Xt−1 + ß2Xt−2 + ß3Xt−3 + ß4Xt−4 + εt

The true parameter is listed in the far left column. Notice that: 1) the coefficients are

inaccurate when the model is underspecified (too few lags) 2) the coefficients are still accurate

when the model is overspecified (too many lags) 3) the standard errors are not affected by

overspecification

Figure 12: Simulation Results: Simple Trend

These results are a bit surprising, as the lagged independent variables are highly auto-

correlated, and I expected multicollinearity to be a problem, which it does not seem to be

here. The results 1)-3) above are robust to:

-X being a purely random variable (no trend)
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-the true model only having lagged coefficients (no Xt)

-the true model skipping certain lags (for instance Xt-2 and Xt-4, but not Xt-3)

However, these results are not robust to

-drastically reducing the sample size

-drastically increasing the error variance

-drastically reducing the size of the coefficients

When the true coefficients are distributed according to a polynomial the unrestricted

model is able to accurately estimate them, but if the degrees of freedom are a concern then

the polynomial distributed lag technique may be desirable. The table below shows the results

for varying lag lengths when the true coefficients are distributed according to a 2nd order

polynomial and the last lag is restricted to be zero.

The true coefficients are accurately picked out when the correct lag length is specified,

but when further lags are included the model is not able to reject the null hypothesis that

they are zero, although it still performs fairly well. After accounting for the uncertainty of

the lag length as in Andrew and Fairs (1992) the standard errors increase significantly when

the model is misspecified. This suggests that without applying the Andrew and Fairs (1992)

method, one could easily accept coefficient estimates that are in reality far from the true

value.

Figure 13: Standard Errors Adjusted for Lag Length Uncertainty from a Polynomial Dis-
tributed Lag Regression

To see if these techniques are appropriate for my situation, I generate data that is dis-

tributed similar to mine but where the true relationships are known. I generate a panel

dataset consisting of: a monotonically changing trend t (representing the travel time) which

only decreases but by different amounts for 42 periods, a variable ts that varies across 5

‘industries’ with some noise across time, fixed effects for each industry, and the dependent

variable which depends on lags and interaction terms

Yit = αi + ζitsit +
3∑

j=0

βjtt−j +j tt−j ∗ tsit + εit,
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where the coefficients are either randomly generated or set manually and ε ∼ N(0, σ2) .

This is parallel to the actual data and desired specification, where the level of travel time

affects the spatial GINI of each industry differently based on it’s truck transport share of

inputs. The primary coefficients of interest are the βj and j on travel time and the interaction

term with truck share. The results from varying lag specifications for both are shown below.

Regardless if the coefficients are generated randomly, linearly, or distributed according

to a polynomial, the results are the same—as more lags are added the regression is unable

to differentiate which lags the true effects are coming from, but the sum of the coefficients is

very close to the sum of the true coefficients, even when the standard errors on the coefficients

are too high to be statistically different from zero. In the previous data generation process

the autocorrelation was fairly high but not enough to cause multicollinearity, however in

this case when tsit and tt are interacted the autocorrelation is much higher, which is likely

causing the inability to distribute the coefficients correctly.

This approach is able to pick out the sum of the coefficients for both the travel time and

the interaction terms, suggesting that the long run effect of the change in roads on spatial

distribution can accurately be inferred, but the timing of the effect may be unknown. This

is true even when leads are included in the true model as shown in the figure below. To pick

out specifically which lag the effect is coming from, a first difference regression with lags

seems tempting, but the same issue of multicollinearity appears, and furthermore the sum

of the coefficients is not equal to the true sum, so it is not able to pick up the total effect as

with the levels. A table for these results are shown below.

Based on these simulation results, while it is likely there are lagged and lead effects from

the road construction, the levels regression is able to pick out the long run effect on spatial

distribution for different industries, even with the interaction term, so this is the preferred

specification.

37



Figure 14: Regression Results with Multiple Lags for Simulated Data
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Figure 15: Regression Results with Multiple Lags and Leads for Simulated Data
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Figure 16: First Difference Regression Results with Multiple Lags and Leads for Simulated
Data
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Endogeneity of Regressors

The travel time is likely exogenous to the spatial distribution of industries for two reasons.

First, the Interstate Highway was planned as a national defense network independent of

the economic growth of different regions, a fact utilized by the literature for identification

(Baum-Snow, 2007; Michaels, 2008; Duranton and Turner, 2014). Second, the travel time

and spatial GINI’s are aggregates for the entire nation. Any changes in spatial distribution

are unlikely to change the travel time because the roads were already going to be built, the

route is influenced by external factors such as the cost of construction based on the grade

and strata, and the timing of construction is influenced by random factors as well such as

weather, local politics, and construction delays. Second, even if the placement of roads is

systematically adjusted by industry stakeholders lobbying, it is unclear the effect this would

have on the aggregate travel time as it could raise or lower it depending on the position of

the industry in relation to paths in-between MSA’s.

If ts and bl are affected by the change in travel time, the change in spatial GINI from a

change in travel time would be:

∂spatialGINIit
∂ttt

= β0 + β3tsit + β4blit + β1
∂tsit
∂ttt

+ β2
∂blit
∂ttt

+ β3ttit
∂tsit
∂ttt

+ β4ttit
∂blit
∂ttt

To refute this, we observe that the change in trucking input share and backward linkages is

very low across time. The largest mean normalized variance (index of dispersion) across time

among industries for ts is .017, while the mean is .0018, both of which are considered to be

not very dispersed. For bl across industries the largest mean normalized variance across time

is .022 and the mean is .0055, which again is not very dispersed. Because these two terms

are changing very little across time we can consider the last four terms in the differential

equation to be zero. See Figures 10 and 11 in the appendix.

Regarding the possibility of an unobserved variable driving the change in spatial distribution–

although including a time effect makes it impossible to identify the coefficient on tt, it still

allows for the interaction of unobserved time effects, yet including a dummy variable for year

does not substantially change the outcome (seen as FE2 in the regression table), nor does

including a time trend. Additionally, leaving out tt entirely and replacing it with a time

trend does not yield the same results, suggesting the movements in tt are meaningful beyond

it’s trend component. See Table 3 in the appendix for these regression results.
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